
A HoneyNet Environment
for Analyzing Malicious Actors

Daniel N. Gisolfi; Michael Gutierrez; Tyler V. Rimaldi;
Casimer DeCusatis, Fellow, IEEE; and Alan G. Labouseur

Marist College
School of Computer Science and Mathematics

Poughkeepsie, NY 12601
{Daniel.Gisolfi1, Michael.Gutierrez2, Tyler.Rimaldi1, Casimer.DeCusatis, Alan.Labouseur}@Marist.edu

Abstract—A honeypot is a web application or other resource
that is deceptively constructed to log the actions of its users,
most (but not all) of whom can be assumed to be malicious
actors. A honeynet is a network of honeypots. Thanks to their
interconnectedness, honeynets allow for vast amounts of data to
be collected for analysis. In this paper we discuss how we came
to build a honeynet, its design and implementation, and a few
insights gained by analyzing attack data gathered from it.

I. INTRODUCTION

The frequency of cyber attacks have been increasing in recent
years [1]. As more devices become compromised and infected,
more data is lost or exposed to malicious actors. The bril-
liant interconnectedness of Internet of Things (IoT) devices
promises to be a cheap but effective addition to malicious
users’ arsenals. In 2016, a botnet resulting from the Mirai
Malware on IoT devices perpetrated a distributed denial of
service (DDoS) attack and took over household cameras [2].
Symantec states that there has been a 600% increase in IoT
attacks during 2017 [1]. In May 2018, the University of
Vermont became a target. The school quickly noticed the
intrusion and alerted its students, faculty, and staff to change
their NetID passwords [3]. Fortunately, UVM did not have its
data exposed or stolen. In summary, it’s pretty bad out there,
and getting worse.

Yet there is hope. By developing and deploying a honeynet,
we hope to collect vast amounts of attack data. Utilizing this
data, we aim to discover attackers’ strategies, motives, and
investments – thus providing insight on how to prevent or
mitigate similar attacks as they occur in the near and distant
future.

Key contributions of this paper include the following:

• traces the evolution of a honeynet
• describes the architecture of a honeynet
• discusses preliminary data analysis from a honeynet
• demonstrates honeynets as a valuable tool for provid-

ing insight on cyber attack data

The remainder of this paper is organized as follows: Sec-
tion II discusses our prior work and introduces the concept of a
honeynet. Section III describes our honeynet implementation.
Section IV provides a preliminary analysis of attack data.
Section V concludes with a plans for future work.

II. BACKGROUND

We have come to develop our honeynet through the natural
(for us) evolution of our cyber security research that began
with using graph analytics to examine data we were collecting
from individual SSH and SDN honeypots.

A. Evolution from Prior Work

G-star Studio [4] is a web-based front end to G*, the
Dynamic Graph Database [5]. Both make up part of the
analytic core of our cyber security research. Soon after making
G-Star Studio available on the public Internet, we observed a
number of unauthorized connection attempts to its Applica-
tion Programming Interface (API). These attacks specifically
targeted G-star’s REpresentational State Transfer (REST) API.
We noticed that our VM ran out of disk space because the G-
star API log file grew to tens of gigabytes. Looking at the
huge log file, we realized we had inadvertently invented an
API honeypot and Pasithea [6] was born.

Once we were working with three individual honeypots –
an SSH honeypot called LongTail [7], an SDN honeypot mim-
icking a software defined network controller and administrative
system called Dolos, and our new “accidental” REST API hon-
eypot now called Pasithea – we found ourselves considering
two steps forward: developing a high interaction honeypot and
connecting our existing honeypots in a network. . . a honeynet.

B. Low Interaction and High Interaction Honeypots

Generally stated, a honeypot is a web application or other
resource (a “system”) that is deceptively constructed to log the
actions of its users, most (but not all) of whom can be assumed
to be malicious actors. Such a tool is classified under one of
two categories: low interaction or high interaction.

Low interaction honeypots emulate certain vulnerabilities
within a system [8], [9]. Essentially, this kind of honeypot
includes a subset of existing vulnerabilities a system may
possess. Because these vulnerabilities are emulated, it does
not put the actual system at risk, as it restricts the mobility of
an attacker. While low interaction honeypots collect detailed
attack data, the range of data they can collect is limited because
these honeypots do not give attackers mobility throughout the
system. As such, this type of honeypot does not collect diverse
data. Instead, it only collects data with respect to the specific
points in the system or vulnerabilities it emulates. For example,



a web application may have a login screen or an API help
page listing its commands. These resources may not have any
functionality at all. In fact, they may simply return (perhaps
random) errors. Essentially, this wastes attackers’ time and
skills while logging their actions, thus enabling us to learn
from their (attempted) exploits.

High interaction honeypots, on the other hand, let an
attacker exploit many emulated vulnerabilities within a system.
These systems generally contain many links and layers, thus
resembling a large infrastructure [8], [9]. By encouraging the
attacker to take control of the entire system or large parts of it,
these honeypots allow the attacker to gain mobility throughout
the system, all while their activities are being logged. For
example, once a malicious actor “hacks” the credentials of
a login screen or uses data from an API help page to execute
commands, the responses from a high interaction honeypot
lead the malicious actor to more resources and other parts
of the system. While this still wastes attackers’ time and
skills, we gain additional data by logging more of their attack
exploits and also the data they supply in using the system (e.g.,
search terms), the paths they take through the system, and the
techniques they employ to move from resource to resource.

There are many ways to construct a high interaction
honeypot. One way is to take several low interaction honeypots
and link them together to form a honeynet.

C. Our HoneyNet

Our honeynet is currently in development, the details of
which follow in Section III. However, we have built and
deployed an alpha version that includes four interconnected
honeypots: the Longtail SSH honeypot, the Dolos SDN/admin
honeypot, the Pasithea REST API honeypot, and our newly
constructed high interaction REST API honeypot called Peitho.
To analyze all of the data we’re collecting, we use a message
queue to send log files to a database and also to LCARS [10],
our Lightweight Cloud Application for Real-time Security, an
analysis and visualization tool. This tool enables us to perform
graph analyses and visualizations, hive plot visualizations, and
relational analyses, all of which help us explore correlations,
frequencies, and outliers in the cyber attack data.

III. HONEYNET CONSTRUCTION

As mentioned earlier, before we constructed our initial hon-
eynet we had deployed each of our individual honeypots as
separate, low-interaction entities. Our fleet consisted of the
Longtail SSH honeypot, the Dolos SDN/admin honeypot, and
the Pasithea REST API honeypot. Longtail, our SSH honeypot,
was constructed with C and Perl. Dolos, our SDN/admin
honeypot, was constructed using Flask, a lightweight Python
web framework [11]. Pasithea, our REST API honeypot,
was constructed with NanoHTTPD, a lightweight Java web-
server [12].

A. A New Honeypot as an Entry Point

Also noted earlier, low interaction honeypots do not pro-
vide much functionality for the attacker and are therefore
limited in the data they can collect. Nonetheless, they have
been successful at gathering substantial attack data. Despite
this success, we wanted to develop something more interactive

that would enable us to collect even more data. Therefore,
we have begun transforming our individual honeypots into an
interconnected honeynet. To facilitate this and to provide a
high interaction entry point to our honeynet, we created a high
interaction REST API honeypot called Peitho. It builds on the
techniques of its low interaction predecessor (Pasithea) and
provides high interaction features such as a login screen, a file
directory and retrieval system, two reroute methods, and an
interactive help page. It is currently serving as the entry point
to our honeynet.

B. Deploying the HoneyNet

The alpha version of our honeynet is hosted in the Marist
College Enterprise Computing Research Lab (ECRL) utiliz-
ing an IBM server cluster. Currently, each honeypot in our
honeynet is scattered across multiple TCP ports on a single
network with a public IP address.

Our honeynet lures attackers in the following manner: as
attackers find interesting and useful data on one honeypot,
depending on their skills, they will be able to piece that
information together, or take the bait, to gain access to other
honeypots. This can be thought of as a kind of cognitive
or motor skill development technique often performed with
developing babies, like placing the right shapes into the right
holes. Just as doctors watch and record their infant patients
place shapes into holes, our honeynet watches (and logs) each
and every step taken by the attackers. This enables us to
collect detailed data so that we can analyze their strategies
and motives, and develop better-tailored bait for the future.

In order to scatter our honeypots, we use Docker, a
containerization platform [13]. We host each honeypot in its
own Docker container. Containerization allows each honeypot
to run in a standalone, dedicated Unix environment (Ubuntu in
this case). This creates a modular system that allows us to add
and remove honeypots on the fly and also allows for easy hon-
eypot management and deployment. Furthermore, containers
cannot reach each other unless they are translated to the proper
sub-network of the virtual machine (VM). Containerization
creates another level of security, as these containers exist
independently from one another on the Docker sub-network
of the VM.

To allow attackers to reach these containers, we have
mapped the ports of the honeypot VMs to Docker sub-network
ports located on the host machine. Such translation creates a
safety net against various types of cyber attacks on the VM.
For example, a DDoS attack on one honeypot will not affect
any of the other honeypots because they each reside on their
own individual containers. Fig. 1 provides an overview of our
honeynet architecture.

C. Moving Through the HoneyNet

Cyber attackers can reach our honeynet on port 80. This
gives attackers access to one of our entry points, Pietho, our
newly-created high interaction REST API honeypot. It contains
special features such as an administrative login page, a file
directory and retrieval system, and two reroute methods. Each
of these functions rely on either an HTTP GET or POST
request. If attackers break through the administration login
layer, they will reach the file directory. The file directory layer



Fig. 1. Honeynet Architecture

contains data about what files are accessible and provides the
file type and file path. Using the file path, an attacker can
attempt to figure out the existence of our file retrieval system.
If an attacker discovers this system they will be able to retrieve
files by using the file path. Currently, there exists a file that
contains the SSH login credentials for our SSH honeypot,
Longtail. Using that data, attackers can link to Longtail. This
serves as a terminating point and will deny access to the
attacker while logging each move the attacker makes regardless
of what credentials or tactics are used.

If attackers do not find or choose not to visit Longtail, they
can visit the REST API help screen. From the REST API help
screen they can use one of two reroute methods. Depending
on which reroute method is requested, the attacker will either
be linked to Pasithea, our low interaction REST API honeypot,
or to Dolos, our SDN/admin honeypot.

If the attacker chose to access the REST API honeypot,
Pasithea, they would be presented with a 404 error screen. This
honeypot is able to take any type of request, regardless of the
HTTP method. However, our honeypot has been strategically
designed to model G* Studios’s API. This allows our honeypot
to be unidentifiable and indistinguishable from a normal HTTP
server [6].

If an attacker takes the system admin direction, Dolos,
our SDN honeypot, they will be prompted to enter login
credentials. The credentials are intentionally made to be simple
and could be brute forced quite easily (in our opinion). Once
attackers successfully gain access, they will be shown a list of
contents pulled from a small PostgreSQL database. We are
currently filling this database with data that will lead to a
future honeypot susceptible to SQL injection attacks, which
of course, we will monitor and log. At the moment, we have
placed fake user and administrator data in this database to give
attackers incentives to consider SQL injection attacks. We are
still considering what data would be most appropriate to store
in this database as bait.1 Fig 2 provides an overview of the
honeynet as it stands today.

D. Activity Tracking and Logging

To track activity in our honeynet, each of our honeypots
creates log entries that follow a common in-house log schema
that highlights all of the pertinent attack data we receive. These
log entries are stored in two forms: as a text log file entry and
as a row in a table located in a PostgreSQL database.

First, requests are logged in a text file that is later
transferred out of its Docker container for persistent storage.

1We are open to suggestions and would love to hear from you.

Then, using an instance of RabbitMQ [14], a message queue
running in another Docker container, we send the log data to
our honeynet queue. Once in the queue, the data is pulled,
parsed, and inserted into a table located in our PostgreSQL
database [15]. This database serves as redundant storage for all
honeypot data. It also supports queries for analysis (via, among
other tools, LCARS). This keeps our attack data organized,
safe, and readily available for analysis.

Using our database in conjunction with LCARS enables us
to visualize attack data and to perform graph and relational
analysis. One of the most powerful methods of exploring
the collected data is by generating a hive plot [16]. Using
hive plots enables us to explore correlations, frequencies,
and outliers that may have gone unnoticed in traditional-style
visuals. With our honeynet and analytic software, we are
able to provide cyber security experts with key insights on
attackers’ strategies, motives, and investments. In addition, we
will be able to use our attack data to add depth to our honeynet
as we continue to learn from our attack data.

IV. PRELIMINARY ANALYSIS

We have found, even at this early stage, multiple types of
recurring attacks that include attempts to kill a PHP5 hash
function and CGI (Common Gateway Interface) attempts to
access Apache files. Additionally, we have noticed that some
attackers use HTTP requests to attempt to load a resource,
usually popular sites such as bing.com and twitter.com, by

Fig. 2. Paths through the Honeynet



sending a request to our honeynet as an HTTP CONNECT
method. We have also observed that there have been several
kinds of attacks where intruders have managed to mask their
user-agent. We find this most interesting and a little disturbing.

On our entry point high interaction REST API honeypot,
Peitho, multiple attackers have attempted to kill some PHP
processes, one of which is usually the md5 hash function.
The attackers attempt to send PHP function calls as POST
parameters. We believe this is an attempt to halt the hashing
of any secure data, potentially causing it to be stored in a less
secure manner. Thus, we hypothesize that this may have be
an attempt to reveal the credentials to the administration login
layer. We also suppose that these kinds of POST requests have
been sent in hopes of triggering PHP scripts that, normally,
would not be running. These scripts include “info.php”and
“yup.php”, some of which are common scripts found in many
web development stacks. Here are some attack examples:

GET phpeval=die(md5(’PHP’));
GET http://5.188.210.12/yup.php
GET http://5.188.210.12/echo.php
GET /phpMyAdmin/index.php

Using this and data like it, we will be creating high
interaction honeypot bait such as PHP scripts disguised as
“info.php”and “yup.php” that, when run, will link to more fake
services in our honeynet representing those common resources.

In regard to CGI attacks, the attackers seem to have
been targeting administrator access to an Apache web server.
Specifically, these attacks targeted the “cgi-bin” folder within
the Apache directory:

GET /login.cgi
GET /cgi-bin/luci/;stok=redacted/expert/
maintenance/diagnostic/nslookup

If the attackers managed to guess the name of one of these
directories all of its content would be sent to the attacker.

Strangely, we have also noticed attackers using the HTTP
CONNECT method to try and load popular sites such as
bing.com and twitter.com. This method would open a two-way
communication pipeline to the requested resource. However,
these CONNECT attempts currently fail because the web
servers in our honeynet honeypots do not handle this type of
request. We plan on enhancing our honeypots to handle these
requests to some degree in the fullness of time.

We noticed that some attackers are able to mask their user-
agent, leaving us without that data in our logs. We find this
annoying. But there are browsers that allow users to change
their user-agent to whatever they desire, and requests can be
sent using either a CURL or a GET command in a terminal,
so it seems that there is little we can do to prevent this.

With these early results, we feel that our honeynet has
provided useful attack data in just a short few months. We
are excited to see what sorts of data we will collect next.

V. CONCLUSIONS AND FUTURE WORK

Our honeynet deceptively traps malicious actors in a web
of various types of honeypots. Thanks to our robust logging
system, we are able to trace every step any attacker takes as

they explore our honeynet. With the help of LCARS and G*,
the data from our honeynet can be visualized as hive plots,
graphs, scatter plots, and other visualizations.

Regarding future work,we plan to expand our honeynet
contents based on what we’ve been learning from our pre-
liminary data. We will also be conducting performance tests
on our logging system to see how it handles large influxes of
data, such as DDoS attacks. Lastly, we will be exploring new
types of bait to use in our honeypots.

ACKNOWLEDGMENTS

Honeynets existed long before this paper. In fact, this work
is motivated by The Honeynet Project, a leading international
501(c)(3) non-profit security research organization [17] and
by the book, Introduction to Cyberdeception [18] by Neil C.
Rowe and Julian Rrushi. Additionally, we would like to thank
our fellow students, the faculty, and staff of the IBM/Marist
Joint Study for their technical (and emotional) contributions.

REFERENCES

[1] Symantec, “Internet Security Threat Report (ISTR),” Symantec Corpo-
ration, Tech. Rep. 23, 2018.

[2] Stephanie Chan, “Are your IoT devices easy to hack?”
https://newsroom.cisco.com/feature-content?type=webcontent&
articleId=1914027, Feb 2018, online, Accessed 7/31/2018.

[3] Sawyer Loftus, “UVM hit by cyber attack,” https://vtcynic.com/
news/uvm-hit-by-cyber-attack/#photo, May 2018, online, Accessed
7/31/2018.

[4] A. Labouseur, S. Crumlish, C. Graves, M. J. Iori, G. Miller, and T. J.
Wojnar, “G* Studio: An Adventure in Graph Databases, Distributed
Systems, and Software Development,” ACM Inroads, vol. 7, no. 2, pp.
58–66, May 2016.

[5] A. G. Labouseur, J. Birnbaum, P. W. Olsen, S. R. Spillane, J. Vijayan,
J. Hwang, and W. Han, “The G* graph database: efficiently managing
large distributed dynamic graphs,” Distributed and Parallel Databases,
vol. 33, no. 4, pp. 479–514, 2015.

[6] G. Leaden, M. Zimmermann, C. DeCusatis, and A. G. Labouseur,
“An API honeypot for DDoS and XSS analysis,” in 2017 IEEE MIT
Undergraduate Research Technology Conference (URTC), Nov 2017.

[7] “Longtail,” http://longtail.it.marist.edu/honey/index.shtml, online, Ac-
cessed 8/3/2018.

[8] David Watson, “Low Interaction Honeypots Revisited,” https://www.
honeynet.org/node/1267, Aug 2015, online, Accessed 7/31/2018.

[9] J.Briffaut, J.-F. Lalande, and C. T. and, “Security and results of a large-
scale high-interaction honeypot,” Journal of Computers, vol. 4, no. 5,
pp. 395–404, May 2009.

[10] M. Molenaer, G. Burek, and A. Labouseur, “LCARS: Lightweight
Cloud Application for Realtime Security,” in Consortium for Computing
Sciences in Colleges, Northeastern Region (CCSCNE), 2017.

[11] “Flask, howpublished = http://flask.pocoo.org/, note = Online, Accessed
8/3/2018.”

[12] “NanoHttpd,” https://github.com/NanoHttpd/nanohttpd, 2017, online,
Accessed 7/15/2017.

[13] “What is Docker?” https://www.docker.com/what-docker, note = On-
line, Accessed 8/3/2018.

[14] “RabbitMQ,” https://www.rabbitmq.com/, online, Accessed 8/4/2018.
[15] “PostgreSQL,” https://www.postgres.org, online, Accessed 8/3/2018.
[16] M. Krzywinski, I. Birol, S. J. JM, and M. A. Marra, “Hive plots, a

rational approach to visualizing networks,” Briefings in Bioinformatics,
vol. 13, no. 5, pp. 627–644, 2012.

[17] “About The Honeynet Project,” https://www.honeynet.org/about, online,
Accessed 8/3/2018.

[18] N. C. Rowe and J. Rrushi, Introduction to Cyberdeception. Springer
International Publishing AG Switzerland, 2016.


