Respiration II:

Gas exchange and transport

Composition of the atmosphere

$$
P_{t o t}=\sum_{i=1}^{n} F_{i} \times P_{i}
$$

Gas	ppm	$\%$	Partial Pressure in atmosphere (mmHg)	Partial Pressure in Alveolus (mmHg)
O_{2}	209,500	20.9	158.84	105
CO_{2}	420.66	0.042	0.421	47
$\mathrm{~N}_{2}$	78,840	78.1	593.56	
$\mathrm{H}_{2} \mathrm{O}$	25,000	$0-4$	30.4	

Gas Exchange: some physics

Partial Pressure: the concentration of a gas in a volume of gas is often expressed as its partial pressure (common units: mmHg).

$$
\text { Boyle's Law: } \quad P_{t o t}=\sum_{i=1}^{n} F_{i} \times P_{i}
$$

Gas	Mole fraction (dry air)	Partial pressure $\left(\mathrm{P}_{\mathrm{i}}\right)$ (mmHg)
O_{2}	0.209	158.84
CO_{2}	0.00042	0.312
$\mathrm{~N}_{2}$	0.781	593.56
Total		752.52

Gasses in Water

Henry's Law: The volume of a gas in water is approximately proportional to its partial pressure in the air in equilibrium with the water. The constant of proportionality (α) is "henry's constant", also called solubility or the Bunsen solubility coefficient, and is empirically determined. It is a function of temperature, other dissolved solutes, etc.

$$
V_{g}=\alpha \frac{P_{g}}{P_{a t m}} V_{H_{2} O}
$$

Gas	Solubility in Water $(\mathrm{ml}$ gas $/ \mathrm{L}$ water $)$ $\left(\right.$ at $\left.0^{\circ} \mathrm{C}\right)$	Volume in Water $V_{g} / V_{H_{2} \mathrm{O}}$ $(\mathrm{ml} / \mathrm{L})$
O_{2}	34.1	7.12
CO_{2}	1019	0.307
$\mathrm{~N}_{2}$	16.9	13.2

Air and Water as Respiratory Media

Quantity	Water	Air	Ratio W/A
O_{2} conc L / L	0.007	0.209	$1: 30$
Density (Kg / L)	1.000	0.0013	$800: 1$
Viscosity (cP)	1	0.02	$50: 1$
Heat cap. (Cal L- ${ }^{\circ} \mathrm{C}^{-1}$)	1000	0.31	$3000: 1$
Heat cond. (cal s $\left.{ }^{-1} \mathrm{~cm}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)$	0.0014	0.000057	$25: 1$
Diffusion Coeff $\left(\mathrm{cm}^{2} \mathrm{~s}^{-1}\right)$	O_{2}	0.000025	0.198
Liters medium/Liter O_{2}	CO_{2}	0.000018	0.155

Oxygen transport in blood

Dissolved oxygen in plasma: Solubility at $37^{\circ} \mathrm{C}$ and one atmosphere (760 mmHg) is about 2.4 ml per 100 mL .
$\mathrm{P}_{\mathrm{O} 2}$ in the alveolus and arteries is only about 100 mmHg .
Thus, the amount of dissolved oxygen in plasma is about 0.3 ml per 100 ml blood. (0.3 volume percent)

The total amount of oxygen in arterial blood is closer to 20 vol\%.

Thus the bulk of the oxygen (98.5\%) is carried by hemoglobin.

Hemoglobin

Hemoglobin Molecule

The hemoglobin loading curve

The hemoglobin loading curve is sigmoidal due to the "cooperativity effect" of the hemoglobin monomers.
The P50 for hemoglobin is a measure of the affinity of the hemoglobin for oxygen (like the Km for enzyme reactions)

The P50 for myoglobin is less than that for hemoglobin allowing it to "steal" oxygen from hemoglobin.

The P50 of hemoglobin for carbon monoxide is about 1/200 of that for oxygen. (and the binding is irreversible)

Characteristics of some vertebrate hemoglobins

Animal	$\mathbf{P}_{\mathbf{5 0}}$ $\mathbf{m m o}_{\mathbf{2}}$	$\mathbf{O}_{\mathbf{2}}$ Capacity $\mathbf{m l ~ O}_{\mathbf{2}} / \mathbf{1 0 0} \mathbf{~ m l ~ b l o o d ~}$
Human adult	30	20
Human fetus	20	8.4
Alpaca	18.4	18
Seal (Cystophora)	24	36
Penguin	34	22
Crocodile	38	$8-10$
Frog (Rana catesbiana)	13.2	9.8
Mackerel	16	15.7
Shark (Squalus)	17	4.4

O_{2} Delivery

Hemoglobin Loading Curve

$\boldsymbol{\Delta} \mathbf{P}_{\mathbf{O 2}}$ $\mathbf{m m H g}$	$\boldsymbol{\Delta} \mathbf{V}_{\mathbf{0 2}}$ Vol\%
100 to 40	4.8
100 to 30	10
100 to 20	16.7

PO2 $\mathbf{m m H g}$	\% Saturation
100	99.2
80	98.06

Modulation of the Binding Curve

A drop in pH causes a shift to the right (decreased affinity). Why is this beneficial?

Other factors:

-Elevated temp: right shift
-Binding of organic phosphates (BPG in humans): right shift

Other organic phosphates: ATP, GTP, IP 3 .

Fetal Hemoglobin in Mammals

Other Oxygen Transporters

	Hemoglobin	Erythro- cruorin	Chloro- cruorin	Hem- erythrin	Hemo- cyanin
Units	4	12	12	8	12
$\mathrm{~mW}(\mathrm{kD})$	64	3500	3000	105	1500
P_{50}	25	26	58	8	103
n	4	1.5	1.5	1	3
Basis	Fe	Fe	Fe	Fe	Cu
Color (ox/deox)	Red/Blue	Red/Blue	Red/Green	Red/Blue	Blue/Clear
In Cells?	Yes	No	No	No	No
		Marine	Marine	Marine	
annelids	annelids	Molluscs, Some arthropods (Limulus,			
Organisms	Mammals, etc.			Homarus)	

CO_{2} Transport in Blood

The governing equation: $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}{ }^{-}$
For the carbonic acid bicarbonate reaction, $\mathrm{pK}=6.1$ at $37^{\circ} \mathrm{C}$.
pH is maintained at about 7.4 by buffering (protiens, phosphate buffer, etc.)

$$
\begin{aligned}
& \mathrm{K}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\
& {\left[\mathrm{H}^{+}\right]=\mathrm{K} \frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{HCO}_{3}\right]}} \\
& \mathrm{pH}=\mathrm{pK}-\log \frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]} \\
& -\log \frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{HCO}_{3}\right]}=\mathrm{pH}-\mathrm{pK}=7.4-6.1=1.3 \\
& \frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{HCO}_{3}\right]}=\frac{1}{20}
\end{aligned}
$$

Effect of pH on bicarbonate transport

$\mathbf{p H}$	$\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{HCO}_{3}\right]$	\% Bicarb
7.0	$1 / 7.9$	12.5
7.2	$1 / 12.5$	8
7.4	$1 / 20$	5
7.6	$1 / 32$	3
7.8	$1 / 50$	2
8.0	$1 / 79$	1.2

Carbon Dioxide

 Transport- There are three pools of CO_{2} in the blood:
- Dissolved CO_{2} : 5\%
- Carbamino $\mathrm{CO}_{2}: 5 \%$
- Protein- $\mathrm{NH}_{2}+\mathrm{CO}_{2} \leftrightarrow \mathrm{H}^{+}+$protein- NHCOO^{-}
- Bicarbonate : 90\%

Summary:Gas Exchange in the tissues

Gas Exchange in the Lung

Altitude adaptations

- Increased hematocrit (increased RBC mass)
- higher concentration of capillaries in skeletal muscle tissue
- increased myoglobin
- increased mitochondria
- increased aerobic enzyme concentration
- increase in 2,3-BPG (lower affinity).
- The length of full hematological adaptation can be approximated by multiplying the altitude in kilometers by 11.4 days. For example, to adapt to 4,000 metres ($13,000 \mathrm{ft}$) of altitude would require around 46 days.

Problem: hypoxic pulmonary vasoconstriction, leads to pulmonary edema due to elevated pulmonary blood pressure (exacerbated by right ventricular hypertrophy).

